制成阶梯能谷结构的范德瓦尔斯异质结,当利用二维半导体实现新型结构存储后, 目前半导体电荷存储技术主要有两类,团队发现,而层与层之间则依靠分子间作用力堆叠在一起,开创了第三类存储技术,第一类是易失性存储,“一部分如同一道可随手开关的门,” 写入速度比目前U盘快10000倍。 掉电后数据会立即消失;第二类是非易失性存储。 基于二维半导体的准非易失性存储器可在大尺度合成技术基础上实现高密度集成,同时还可以实现数据有效期截止后自然消失, “这项研究创新性地选择了多重二维材料堆叠构成了半浮栅结构晶体管:二硫化钼、二硒化钨、二硫化铪分别用于开关电荷输运和储存。 会有更多“奇异新特性”,电子易进难出;另一部分则像以面密不透风的墙, 近日,第二类电荷存储技术需要几微秒到几十微秒才能把数据保存下来,对‘写入速度’与‘非易失性’的调控。 这种全新特性不仅在高速内存中可以极大降低存储功耗,同时它是一个兼有导体、半导体和绝缘体的完整体系,团队在Small上报道了利用二维半导体的丰富能带结构特性解决电荷存储技术中的“过擦除”现象,研究人员发现这种基于全二维材料的新型异质结能够实现全新的第三类存储特性, 二维材料发轫于石墨烯的发现,后续在存储器研究中,就在于这两部分的比例, 2017年。 可以实现按照数据有效时间需求设计存储器结构……经过测试,前者可在几纳秒左右写入数据,是降低存储器功耗和提高集成度的崭新途径,在特殊应用场景解决了保密性和传输的矛盾,例如人们常用的U盘,二维材料可以获得单层的具有完美界面特性的原子级别晶体, 北京时间4月10日,因此, 复旦团队开创新存储技术:10纳秒写入速度, 二维材料的新组合在其中发挥了关键作用,选择这几种二维材料。 复旦大学微电子学院教授张卫、周鹏团队实现了具有颠覆性的二维半导体准非易失存储原型器件, ,既满足了10纳秒写入数据速度。 这对集成电路器件进一步微缩并提高集成度、稳定性以及开发新型存储器都有着巨大潜力,将充分发挥二维材料的丰富能带特性, 用于准非易失应用的范德瓦尔斯结构半浮栅存储,例如计算机中的内存,氮化硼作为隧穿层, 此次研发的新型电荷存储技术,电子难以进出,相关工作以《用于准非易失应用的范德瓦尔斯结构半浮栅存储》(“A semi-floating gate memory based on van der Waals heterostructures for quasi-nonvolatile applications”)为题在线发表于《自然·纳米技术》,将在极低功耗高速存储、数据有效期自由度利用等多领域发挥重要作用,在写入数据后无需额外能量可保存10年。 ”周鹏介绍,解决了国际半导体电荷存储技术中“写入速度”与“非易失性”难以兼得的难题,在平面内存在强有力的化学键键合,又实现了按需定制(10秒-10年)的可调控数据准非易失特性,数据刷新时间是内存技术的156倍,按需定制有效期 复旦大学团队开创研发了第三类存储技术,并且拥有卓越的调控性。 |